Air Products Home

Non-ferrous Production

Browse previously asked/answered questions below.

  • How do I choose the right burner technology if my melting furnace is a bottleneck or I want to increase production?
    Russell Hewertson Russell Hewertson
    Manager of Combustion Technology

    Your furnace may have heat recovery or conventional cold air-fuel burners. Air Products recognizes that no two furnaces are alike, and that the best solution will match your furnace’s characteristics and situation.

    When your furnace was first built, oxy-fuel may not have been appropriate, but now that you need a production increase or your furnace has become a bottleneck, an optimized oxy-fuel retrofit can often be a very cost-effective solution.

    Following an assessment of your operation, Air Products’ applications engineers can combine our experience, modeling capabilities and wide range of proven burner technologies to develop a customized oxy-fuel solution for your operation—often increasing production by more than 30% with a payback of as little as 3–6 months. And with our latest patented burner, even increasing yields.

    To put our 6 decades of experience to work for you, give us a call at 800-654-4567.
    Was this helpful?
    + Submit a follow up question
  • I know my flowmeter tells me that I have a certain gas flow rate, but how can I be sure?
    Flowmeters must be sized properly for each particular application, type of gas, gas pressure, and operating range. First, make sure that your flowmeter is calibrated for the specific gravity of the gas that you are metering. Check the label or the glass tube of the flowmeter or call the manufacturer to be sure. Second, operate the flowmeter only at the pressure for which it was calibrated. As an example, a variable-area flowmeter calibrated for 80 psi and reading 1000 scfh will really only be delivering 760 scfh if it is operated at 40 psi. This is a 24% error! Third, for best accuracy and to allow room for adjustment, size the flowmeter so that your normal flow rate falls within 30%–70% of full scale. These three steps will help ensure that you have good control over your gas flows and, ultimately, your process.

    For a free copy of Gas Atmosphere Analysis Guidelines, please call 800-654-4567.
    Was this helpful?
    + Submit a follow up question
  • I’m experiencing intermittent oxidation in my furnace. Could leaks in the nitrogen houseline be the problem?
    Don Bowe Don Bowe
    Sr. Applications Engineer

    Yes, leaks in any pressurized high-purity gas line can cause intermittent oxidation. There are several possible causes. One is through retrodiffusion—the movement of impurities from the surrounding air to a high-pressure, low-impurity gas houseline. This is driven by concentration gradients, not pressure gradients, and is aggravated by changes in flow rate, pressure or piping temperature.

    Air Products industry specialists can help you determine the cause of your problem. Since the oxidation is intermittent, you’ll need to continuously monitor your nitrogen houseline for leaks with a trace oxygen analyzer. For combustible gas lines, a combustible gas sniffer can also be used. Once impurities are found, the source of the leak can be identified using various techniques, including soap bubble testing, static pressure testing or helium mass spectrometry. Leaks often occur in weld cracks, mechanical joints, valve packing and loose fittings.

    To help minimize wasted product and part oxidation, call us for a leak detection or full process audit at 800-654-4567.
    Was this helpful?
    + Submit a follow up question
  • Is it true that NFPA 86C has changed?
    Mark Lanham
    Applications Engineer

    Yes, it's true. In fact, NFPA 86C no longer exists. The requirements for "Industrial Furnaces Using a Special Processing Atmosphere," formally defined in the 1999 version of NFPA 86C, have been incorporated into NFPA 86 as of July 18, 2003. Now, NFPA 86 combines the furnace safety requirements for all types of industrial furnaces, including Class A – Food and Baking Ovens, Class B – Melting Furnaces, Class C – Furnaces Using Special Processing Atmospheres, and Class D – Vacuum Furnaces.

    The previous contents of NFPA 86C are now primarily found in Chapter 11 of NFPA 86. A notable change is that NFPA 86 recommends that users of Class C furnaces include a low temperature alarm panel to indicate an overdraw condition on the ambient air vaporizers used for emergency purging. Previously, NFPA 86C required the use of a low temperature flow-restricting device that could potentially limit available purging capacity. Air Products' PURIFIRE® nitrogen supply monitoring system is designed to help you comply with this new recommendation.

    Users of furnaces with special processing and flammable atmospheres should fully understand the requirements and recommendations of NFPA 86 and determine how the changes from the old NFPA 86C may affect their furnace operations. For help in understanding these specifications or for more information about our PURIFIRE nitrogen supply monitoring system, contact us at 800-654-4567.
    Was this helpful?
    + Submit a follow up question
  • When does on-site nitrogen generation make sense versus liquid nitrogen delivery?
    Steve Ruoff
    Metals Processing Segment Manager

    The amenability of on-site gas generation involves many factors—nitrogen flow and purity are the most important ones. Flows with a steady or sufficient baseline rate can be great fits for on-sites. Periodic or erratic flow patterns can be amenable if the volumes, pressure and purity are sufficient to allow gas storage that covers peak flows. Also, the lower the purity requirement, the greater the amenability—although high purity is amenable at higher volumes. Other factors include local power cost and pressure required. There are no firm rules defining when to switch from delivery to an on-site. Different on-site options are available to meet your nitrogen requirements, including pressure swing adsorption, membranes or cryogenics. Count on Air Products’ extensive experience in on-site technologies to help you determine your optimal supply mode. Call 800-654-4567 for an assessment.
    Was this helpful?
    + Submit a follow up question
  • How can I optimize melting of contaminated metal scrap?
    Jin Cao
    Principal Development Engineer

    Metal scrap that’s contaminated with combustibles like oil, paint or plastic is difficult to melt with conventional methods. Thermal delacquering systems are often used to pretreat the scrap before it’s melted, but these systems increase operational costs. Processing contaminated scrap in air-fuel furnaces has drawbacks like high combustion gas volumes and fumes. The temperature and particles of the combustible material can overwhelm the baghouse. Often, particle load and contamination of the furnace gases do not allow the operation of regenerative burner systems, making energy-efficient melting hard to achieve. Plus, unburned combustibles can reduce furnace efficiency. Oxy-fuel and air-oxy-fuel combustion technologies can enable in situ burnout of combustible fumes, lowering combustion gas volumes and increasing temperatures. Also, utilizing the energy released by burning the contaminants can help reduce energy costs. Call us to learn more about optimizing your scrap melting, 800-654-4567.
    Was this helpful?
    + Submit a follow up question
  • How can I reduce my gas consumption for molten metal blanketing?
    Matt Hawkins
    Principal Applications Engineer

    By reducing the oxygen content above the induction furnace, inert gases—typically argon—have proven benefits for blanketing molten metal, including higher yields, lower alloy fading, decreased nonmetallic inclusions, reduced casting porosity, lower casting rework and rejects, and increased refractory lifetime. However, inert gas costs can impact your bottom line.

    Air Products’ patented swirl cone technology delivers all the benefits while using up to 50% less argon. In side-by-side testing, this patented technology using gaseous argon reduced the oxygen level above the furnace to less than 2%, with little or no interference to the melting operation. In addition, the technology’s design enables it to remain in place during charging and pouring.

    Watch our Ask the Experts video for more information
    To hear more details on how this technology can improve your operation, call us at 800-654-4567.

    Was this helpful?
    + Submit a follow up question
  • Can I remotely monitor what’s happening in my furnaces and other process equipment while I’m away from my plant?
    Chris Ward Chris Ward
    Engineering Associate

    With the proper instrumentation and controls, you can securely monitor and control your heat treating or thermal process from nearly anywhere in the world! This is possible using a variety of hardware and communication methods, including Internet, dial-up, and cell phones. Alarm and warning notifications can also be proactively delivered to you so you can react to upsets, trends, and events before it’s “too late.” It’s important to identify the key parameters, equipment and instrumentation you want to monitor, and then select the hardware and software that best match your needs. Contact Air Products’ team of remote process monitoring and control specialists at 800-654-4567 for an assessment and recommendations as to how to get started.
    Was this helpful?
    + Submit a follow up question
  • How do I know if I’m wasting gas due to leaks in my gas piping?
    John Green
    Research Technician

    Gas piping leaks can result from various conditions, including improper thread sealing, missed brazed joints, defective piping, over pressurization, or even vibration and shocks. A pinhole leak can cost you tens of thousands of dollars per year, depending on the size, number and severity of the leak(s). There are many ways to detect leaks; for instance, using soap tests, pressure drop tests, mass spectrometry or thermal conductivity tests. They all have their place; however, they also often come with limitations in precision, speed, difficulty or cost.

    Air Products’ leak detection service can identify and repair costly leaks in your piping to help improve your part quality and bottom line.

    In a short video, various methods for identifying leaks are described in more detail. You can view it online at www.airproducts.com/experts2. If you’d like to speak to a specialist about a leak detection audit of your facility, give us a call at 800-654-4567, and mention code 833.

    Was this helpful?
    + Submit a follow up question
  • Why do people use oxygen for combustion when air is free?
    Russell Hewertson
    Manager of Combustion Technology

    Air contains almost 80% nitrogen, which doesn’t burn; it heats up and removes heat from the process as it exits in the form of hot flue gases. Combustion with oxygen eliminates this waste and provides faster melting, lower fuel usage, lower carbon dioxide generation, reduced NOx and particulate emissions and higher flame temperatures. Oxygen also efficiently burns lower quality fuels and wastes. The economics of using oxygen depend on the process and the needs of the manufacturer. Oxygen benefits are greatest for manufacturers who need extra production, have higher temperature processes (glass, steel, etc.), lack heat recovery, or have emissions issues or undersized baghouses. Oxygen is generally less attractive for just fuel savings, especially for lower temperature processes like boilers, unless fuel costs are extremely high or there are other drivers.

    Can your process benefit from oxygen? Call us at 800-654-4567.

    Was this helpful?
    + Submit a follow up question
– Return to top

Submit a Question

Don't see your question asked? Submit your own!

Ask a Question
Fill out the below form and submit a question to Air Products
  1. You must enter a question and have it be less than 150 characters. 150 characters left
  2. First Name is required.
  3. Please enter a valid email address.

Thank you for submission. Your question will be forwarded to one of our experts.

X

This site uses cookies to store information on your computer. Some are essential to make our site work; others help us to better understand our users. By using the site, you consent to the placement of these cookies. Read our Legal Notice to learn more.

Close