Advanced Hydrogen and CO₂ Capture Technology for Sour Syngas

Air Products and Chemicals, Inc.
Jeffrey Hufton, Timothy Golden, Robert Quinn, Jeffrey Kloosterman, Charles Schaffer, Reed Hendershot and Kevin Fogash

Air Products PLC
Andrew Wright and Vince White

Gasification Technology Council
Gasification Technology Conference
Oct 31st – Nov 3rd
Washington, D.C.
Air Products provides technology to capture CO₂ from fossil-fuel-based processes

Hydrogen production from natural gas with CO₂ capture
- For power generation, vehicle fuels, refinery applications

Oxyfuel technology for pulverized coal boilers
- Amenable to both new-build supercritical power plants and retrofitting the large installed base of existing coal-fired assets

CO₂ capture from gasification
- Integrated CO₂ capture and acid gas removal

Advanced separation technology
- CO₂ technology using membranes, adsorption, absorption and cryogenic systems
Simplified Gasification Flowsheet for H_2 Production and CO_2 Capture

- **“Conventional” Route**
 - Bulk AGR
 - Polishing PSA
 - CO_2 and H_2S separated
 - Tailgas philosophy

- **Acid Gas Removal**
 - Physical solvents
 - Multi-column, multi-flash process
 - Heat integration
 - Minimizing cooling load
 - Manage impurities

From Gasifier → Water Gas Shift → Cooling (-40 to 32 °F) → AGR → Claus Plant

H_2 → PSA → CO_2 → Vent → Sulfur

H_2S → CO$_2$
Air Products' "Sour PSA" Technology for H\textsubscript{2} Production and CO\textsubscript{2} Capture

- Improved route
- Single step purification
- Based on existing PSA technology
- Designed to meet H\textsubscript{2} purity
 - High Purity H\textsubscript{2}
 - Lower purity for power
 - Sulfur slip of < 3 ppmv, can design for ppb applications
- Reduced capital and operating cost
- Reduced cooling duty, no chilling or refrigeration
- CO\textsubscript{2} and H\textsubscript{2}S rejected in tailgas
Tailgas Disposition and Integration

Sour PSA

H₂S, CO₂

GTCC

H₂, N₂

HRSG

Air, Exhaust

Combustor

O₂, SOₓ, NOₓ

CPU

H₂SO₄, HNO₃

Vent, CO₂
Sour PSA Technology Development

- Screening by H₂S exposure tests
- Preliminary characterization
- Selection for additional testing
Sour PSA Technology Development

- Flexible arrangement: PSA or TSA
- Proof of concept on actual syngas
- Adjust operational parameters
- Advanced characterization
- Enabled rapid model development
- Multiple feedstocks
H$_2$S Capacity Stabilizes

![Graph showing H$_2$S Capacity over Number Cycles for different loads and fresh adsorbent.]

- **Bed A 1st load**
- **Bed B 1st load**
- **Bed A 2nd load**
- **Bed B 2nd load**
Sour Combustor Development

- **Design Basis**
 - Oxy-Tailgas burner
 - Leverage off oxy-fuel combustion expertise
 - Single or multiple burners
 - Housed in a fired heater or package boiler

- **Status**
 - Designed and tested prototype burners
 - Conducted tests with H_2S laden stream
 - Stability map established
 - Performance mapping underway
CO$_2$ Purification Unit

- Reactive purification technology
 - High pressure NOx catalyzed oxidation of SO$_2$ to H$_2$SO$_4$ acid
 - Further purification to remove water and inerts
 - Flowsheets for storage or EOR grade CO$_2$ applications

- Originally developed for oxycoal power boiler applications
 - Currently in the pilot phase of development

- Extended for sour combustion flue gas
Techno-Economic Benefits

<table>
<thead>
<tr>
<th>Case</th>
<th>Units</th>
<th>High Purity H₂</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base</td>
<td>Sour PSA</td>
</tr>
<tr>
<td>Petcoke Input</td>
<td>MT/d</td>
<td>4,000</td>
<td>4,000</td>
</tr>
<tr>
<td>H₂ Produced</td>
<td>kNm³/hr</td>
<td>305</td>
<td>299</td>
</tr>
<tr>
<td></td>
<td>MMSCFDD</td>
<td>279</td>
<td>273</td>
</tr>
<tr>
<td>Power Produced</td>
<td>MW<sub>net</sub></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% CO₂ Captured</td>
<td></td>
<td>~95%</td>
<td>>99%</td>
</tr>
<tr>
<td>Capital Savings</td>
<td>Millions USD$</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Operating Savings</td>
<td>Millions USD$/yr</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Reduction in CO₂ Capture Cost</td>
<td></td>
<td>25.2%</td>
<td></td>
</tr>
</tbody>
</table>
Air Products is developing a proprietary low-cost CO$_2$ capture option for pre-combustion systems
- Applicable to H$_2$ and power production

The technology consists of:
- H$_2$ PSA adapted to handle sour syngas
- Low-BTU oxyfuel burner
- SO$_x$, NO$_x$, and inert removal system developed by Air Products for oxyfuel coal combustion

Potential advantages over the state of the art:
- Lower capital and operating costs
 - 25 % reduction in the cost of CO$_2$ capture
- Feasible to achieve ~100 % CO$_2$ capture rate
Scale-Up Pathway

Lab scale Gasifier / PSA

Design of pilot plant

Grand Forks, ND

EERC

Calgary, Canada

AERI

Pilot

Adsorbent life tests

H₂S/CO₂ PSA

H₂ Product

H₂S+CO₂

Q

O₂

CO₂
Thank you
tell me more

www.airproducts.com